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TECHNIQUE FOR SYNTHESIS OF CONSTANT LINEAR DYNAMICAL SYSTEMS
WITH A BANG-BANG CONTROLLER

By Jerrold H. Suddath and Terrance M. Carney
SUMMARY

A theoretical study was made to determine the utility of a technique for
the synthesis of constant linear dynamical systems with a bang-bang controller.
The technique employs linear switching logic and the premise that the use of
time-dependent gains eliminates endpoints. Conditions for asymptotic stabllity
were obtained from consideration of Liapunov functions.

As part of the investigation, the technique was applied in an analog com-
puter simulation of an idealized attitude-control system for spinning space
vehicles. The system was idealized in the sense that the equations of motion
were linearized and time lags in control-system components were neglected.

The analog simulation demonstrated the stability and flexibility of the closed-
Joop control logic under a variety of conditions, and no endpoints were
encountered.

INTRODUCTION

In the last few years the theory of optimal control processes has received
much attention. (For example, see refs. 1 to 10.) Much of this attention has
been focused on the problem of time optimal control of linear dynamical systems
with limited control inputs. The theoretical solution of this problem is
well-known and example applications of the theory have appeared in the litera-
ture. (For example, see refs. 11 and 12.) However, the practical problems of
mechanizing closed-loop time optimal systems have not been solved. This 4if-
ficulty stems from the fact that the time optimal control logic requires a
complete knowledge of the state of the system, and a relatively sophisticated
computer in the control loop. With present-day computing equipment, these
requirements rule out the feasibility of time optimal control in some applica-
tions to small spacecraft. It may be impractical, or perhaps lmpossible, to
determine completely the state of the system; moreover, limitations on weight,
space, reliability, complexity, and so forth, may prohibit the use of sophis-
ticated computers in the control loop. Therefore, it seems reasonable to
investigate control logics which yield control laws with the same analytical
structure as the optimal control, but which appear to be relatively easy to
mechanize.



The purpose of this investigation was to study the applicability of linear
switching logic to the regulator problem where the plant is a linear dynamical

system with constant coefficients.

Since constant gains in the control loop

lead to endpoints (see ref. 15), attention was centered on the use of time-
dependent gains.

The analysis was conducted by determining conditions for asymptotic sta-

bility from properties of Liapunov functions.
developed, a heuristic synthesis technique was postulated.

Once these conditions were
This technique was

successfully applied in an analog simulation of an idealized attitude control

system for spinning space vehicles.

The system was idealized in that the equa-

tions of motion were linearized and time lags in control-system components were

neglected.
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Results of the analog simulation are included in the report.
SYMBOLS

n X n matrix of constant coefficients determined by dynamics of
system

constant n-vector determined by dynamics of system

constant positive definite n X n matrix, defined as solution

of equation (7)

particular form of optimum gain vector defined by equation (6)

n-dimensional gain vector

constant positive definite n X n matrix used in performance

index (eq. (4))

unit vector in direction of free gyro spin axis

moments of inertia of vehicle about principal vehicle X-, Y-,
and Z-axes, respectively, slug-ft2

transverse moment of inertia when Iy = Ig, slug-ft2

unit vectors along principal X-, Y-, and Z-axes, respectively
maximum avallable control acceleration, radians/sec2

external pitching and yawing moments, respectively, in principal
vehicle-axis coordinate system, ft-1b

neighborhood of point b with radius p
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p,q, T

o>

X,Y,Z

-
X

121 -

a, f

sen[ ]

det ( )

|1

integer

null vector

angular velocities about principal X-, Y-, and Z-axes, respectively,
radians/sec

positive constant spin rate of vehicle about X-axis, radians/sec

Laplace transform variable
time, sec

scalar control parameter
particular form of optimal control law (see egs. (5) and (6))
Liapunov function defined by equation (8)

principal vehicle-axis coordinates
n-dimensional state vector

X12

1

gimbal angles of free gyro measured relative to spinning principal
body axes, radians

eigenvalue of matrix, defined by equation (A1l9)

radius of neighborhood, defined by equation (15)

vector angular velocity of X-, Y-, and Z-axis system, radians/sec
switching function

algebraic sign of term within bracket

frequency defined by equation (A3), radians/sec

determinant of gquantity in parentheses

Fuclidean norm



[ j square matrix

l l absolute expression

Subscript o denotes initial value. An integer subscript denotes a com-
ponent of a vector. Dots over symbols denote differentiation with respect to
time. An arrow above a symbol denotes a vector. An asterisk denotes the
transpose of a matrix and of a vector.

ANATYSIS

Problem Statement

The problem considered in this investigation 1s stated as follows. Let a
system be described by a set of n differential equations which can be written
in vector-matrix form as

2= [A)R+ (o) =) (@)

- . . . . .
where X 1s the n-dimensional state vector, [AJ is a constant n X n matrix,

a is a constant n-vector, and u, the scalar control parameter, is a function
of ¥ and t. For a bang-bang control system, the control function u has
the form

u = sgnEj(E},t)] (2)

where sgnl}(iiti] means the algebraic sign of a(iit) so that u 1is
restricted to values of *1. The function G(Eit) is generally called the

switching function.

Assume that the system is completely controllable in the sense of refer-
ence 7 and that X, # 0, and find a u(iit) (provided one exists) which makes

X(t) 50 as t - w.

Formulation of Solution

Method of formulation.- The solution presented herein is formulated by
first examining some of the properties of a linear control system and then con-
sidering how the linear control law might be modified to produce a stable non-
linear (bang-bang) control law. The conditions for stability are derived from
considerations of Liapunov functions.




A linear control law.- A linear control law is the solution to the fol-
lowing problem. Given the completely controllable system

X = [A:]? + ua (i’(o) =X, # O) (3)

find the control law, say ﬁ(iﬁt), which minimizes the integral
+o0
1 f (z’ . [:c:[i’+u2)dt (%)
2 Jo

* .
where [?] = [ﬁ] is a glven positive definite matrix.
From results given in reference 14, U is given by

o>

'Y (5)

A
u =

with the constant n-vector 1Y being given by

o>

=_@]§ (6)
where the symmetric positive definite matrix [#] satisfies

(5] [2] + [a)*[5] - [B)e=" 7] = -[c] (7)

Stabllity properties of linear control system.- If a positive definite
Liapunov function V 1s defined by

v=%.[B% (8)

it has the negative definite time derlivative given by

=% (B0 + (7] - e )% = -(@ - [)% + o)) (9)

from which it follows (as in ref. 14) that the system (eq. (3)) with control
is exponentially asymptotically stable.

Consider the following gquestion: How could the gain vector b be varied
without disrupting the stability of the linear control system? Estimates of
the variation can be calculated by setting

w-(Bem) . ® (20)

)



calculating the time derivative of V, which leads to
A
vV = _(E’- [c]i?+ ﬁ2> - 2(5’ . ?)(A_b’ :‘c’) (11)

and determining conditions on Ab such that V < O.

—_
The approach taken herein is to consider the following two cases: (1) Ab
A —_ A

colinear with ©® and (2) 2b not colinear with b.

Case (1): If Ab is colinear with b, let

& = 6b (12)
where 6 1is a scalar parameter. Then equation (11) can be rewritten as
. 5 ¥
V = -(i’. [c]i’+ ﬁg> - 29(b . E’) (13)

from which it is immediately obvious that V<O forall § 2 0. Furthermore,
it can be shown that V < O if

-“'l

~ ]2

-
2|

where pn; > 0 is the smallest eigenvalue of [Q].

<9 < o (lll-)

— = .
Case (2): If Ab is not colinear with Ei it can be shown that V (given by
(11)) will be negative if

”A_b)” =f (15)

ellb T

where the middle expression defines op.

This result has the geometrical interpretation represented in figure 1.
Inequality (15) means that there ;s a neighborhood of radius p surrounding

the point defined by the vector v and every gain vector defining a point in
this neighborhood i1s a stable gain vector for the linear control system. 1In
figure 1 the neighborhood is represented by the interigr of the circle with

radius p and center at the point defined by vector . This neighborhood is
denoted by Np(?).

It is interesting to note that the estimate on the lower bound of 6 is
in perfect agreement with inequality (15). This agreement can be seen as

6
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Figure 1.- Geometrical representation of stable gain region.

follows. In equation (12) replace 6 by the lower bound estimate given in
inequality (1L4) to get

_/:) A
0%

FHNENE

which says that A_b) is in the opposite direction of b_) and has magnitude p.
From the geometry of figure 1 it is clear that the estimates agree.

o

-ty

?l

(16)

These properties of the linear control law having been noted, attention
is now turned to the nonlinear (bang-bang) case.

A bang-bang control law.- If the switching function o(X,t) in equa-
A
tion (2) is given by © . ¥, u can be written as

u = sgnE) . ?] r—— (17)

where u 1s understood to be zero when b . = 0. Then if equation (l"{) is
used as the control law in system (1), equa.tion (1) can be rewritten as

¢>c1>

o’

(18)

2-[dR+2

o'p|os
N L




It is well-known (see ref. 13) that this control law leads to endpoints; that

is, it is impossible to use © - ¥ as the switching function (where v is a
constant n—vector) without having a region in which the control will begin to

chatter if the trajectory (solution of eq. (18)) hits the hyperplane b-%=0

with i?# 0. This facet of the problem will be treated after considering the
stability of the system (eq. (18)).

The stability of the system described by equation (18) is readily examined
by defining a scalar parameter 9 such that

1+0 = —2T (19)

A
—_y
P
Then, with a straightforward substitution, equation (18) can be rewritten as

% = [A]i’+'a’[(%’+ eg’ﬂ . X (20)

which shows that this bang-bang control law can be regarded as a linear control
law with a colinear variation of the gain vector, that is,

A e ~
w=(Bem) 2= (Beob) . 7 (21)
Since it is known (from the stability properties of the linear system) that the

system is stable for 6 > equation (19) can be solved for 6 and the

result used in the left-hand term of inequality (14) to determine stability
conditions. This procedure leads to

—H

1 1> _L (22)
R

or
—A—l—> 1- o (23)
ERE WY

as a sufficient condition for stability. It is clear that inequality (23) must
hold if the right-hand side is negative; however, this is true only if the sys-
tem is asymptotically stable without control. To prove this statement, proceed
as follows: Suppose the right-hand side of inequality (23) is negative. Then

1 (24)

L
A2



which can be rewritten as

l’b ” <= 2||b ” =0r (25)

From the geometry of figure (1) it is easy to see that inequality (25) holds
only if Np b ) contains the origin, which in turn is true only if the uncon-
trolled system 1s asymptotically stable. This relation follows from the fact

that the use of any B in Np<5§ makes the linear system asymptotically stable;

therefore, if G is in Np 5’, the system must be asymptotically stable without
control.

Suppose that the right-hand side of inequality (23) is positive but clearly
less than unity. The inequality then would hold if

SN > 1 (26)
R EE]

from which a sufficient condition for V < 0 1is

1% I < (27)

o>

The significance of this inequality is explained by considering the fact

that the choice of [@] = [CJ* > 0 1s arbitrary so that iy is any gain vector,
of the form

= -[g)2 (Eﬂ = [3]" > o) (28)
which 1s a stable gain vector for the linear control system. Therefore, the

minimum Ilbll of this form may be regarded as a measure of the minimum amount
of "muscle" required to stabilize the linear control system. If M is defined

as the minimum Y considering all possible positive matrices in equa-

tion (4), that is,
w2 {“ l} (29)

then inequality (27) can be rewritten as

2]l <3 (30)



The following conclusions can then be drawn relative to the stability of the
bang-bang control system (eq. (18)) prior to an endpoint.

(1) If the uncontrolled system is exponentially asymptotically stable
(M = 0), the controlled system will be asymptotically stable.

(2) If the uncontrolled system is neutrally stable in the sense that
M > 0 may be arbitrarily small (from inequality (30)), the controlled system

will be asymptotically stable for all rimite ||¥ .

(3) If the uncontrolled system is unstable in the sense that M > O must
be finite, the controlled system will be stable if I'E>H < M1,

From physical considerations it is clear that when the uncontrolled system
is unstable (M > 0) and the muscle is limited (as in the case of bang-bang con-

trol), the system must remain in a neighborhood of the origin (estimated by
inequality (30)) where the muscle can override the instabilities of the system.

The endpoint problem.- In reference 13 it is proved that every state

vector X which satisfies

AR

—
¢« X

-0 (31)

-3 - [B]'éf):%)- <K - [A]*%’< -%)- a=a - [B]Ef (32)

is an endpoint. That is to say, that when the trajectory (solution of eq. (18))
hits the hyperplane b - X=0 at one of these points, the state vector X
gets trapped in the hyperplane and the control begins to chatter since 59-';
is the control switching function.

Since the problem lies in the fact that X cannot get out of the hyper-

plane (E’- X = O), it seemed reasonable to ask: Can this problem be alleviated
by moving the hyperplane away from the state vector? If it is assumed that the
answer to this question is yes, the groundwork has been laid for the following

heuristic synthesis technique.

Heuristic synthesis technique.- After the stability conditions have been
investigated and a solution to the endpoint problem assumed, the heuristic syn-
thesis technique consists of the following steps:

Given the system

X = [A]R+ w (y(o) - yo)

10



subject to the constraints |ul £1 and
det(a’, [A]5, [A]za’, c.. A n'la’) #0
A~
select a B of the form —[BJE) such that all the roots of

det([A] v 3 - K[I]) =0

have negative real parts. Let b(t) (of the form -[B]E? for all t 2 0) be
given by

B(t) = b + Mo(t)

(Where b is a constant vector and || Ab(t) ” is sufficiently small for all
t = O). Then a stable bang-~bang control law is obtained by setting

w(Zt) = sen[Blt) - X]

To generate some feeling for its utility, this synthesis technique was
applied in an analog simulation of an idealized attitude control system for
spinning space vehicles.

APPLTICATION OF SYNTHESIS TECHNIQUE TO ATTITUDE CONTROL

OF SPINNING SPACE VEHICLE

Description of Control System

Figure 2 represents the system components. The X,Y,Z axes are principal
vehicle axes. The vehicle spins about the X-axis to provide basic gyroscopic
stabllity. The control system consists of a free gyro, one rate gyro, pitch
Jjets, and a computer. The free gyro is set so that its spin vector and total
angular momentum vector are coincident with some reference direction in inertial
space. Since the gyro is free (frictionless gimbal bearings), it will maintain
this attitude. If the X-axis is parallel to the spin vector of the free gyro,
and if at the same time q = r = O (pitch and yaw rates are zero) and no torques
are acting on the vehicle, the vehicle will have the desired reference attitude
and tend to maintain it. If the X-axis 1s not parallel to the free gyro spin
vector, the misalinement will be sensed by a pickoff device sensing the gimbal
angle B which is detailed in figure 3. Thus the free gyro and the rate gyro,
which senses q, supply the computer with the information needed to determine
control torques. The control torques are supplied by the pitch jets in accord-
ance with the output of the computer. A block diagram of the system is given
in figure k.

11



Gimbal angles

Figure 2.- Illustration of control system for spinning space
indicate the principal vehicle-

vehicle. X,
fixed axes.

~

Y, and 2

Pitch jets
N

2

&
|V

Free gyro

Zy

Figure 3.- Detail of gimbal
angles a and B. The
unit vector & has the
direction of the free gyro
spin axis with orientation
given by a and B, meas-
ured relative to the X-,
Y-, and Z-axis system.

Ed %
s é =
(Al %
[A] (=
uzm — =
a sgn(b.)

Figure 4.- Block diagram of closed-loop
bang-bang control system.

Dynamic and Control Logic Equations

The equations which were used to describe this system are developed in the

appendix.
as follows:

12
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PoB - a
“Po = T

The resulting equations and control relations in explicit form are

(33)



/////// 61 - cos 2wt

u(Xt) = sgn@(t) . ?j (3%)

o

b(t) = (35)
0

by |

The frequency 2w used in Zﬁkt) was chosen arbitrarily, and the results of
the analog study verified the fact that system response is not critically depend-
ent upon this quantity.

Analog Simulation of Control System

An analog computer simulation of a representative system was mechanized by
using equations (33), (34), (35), and the following values:

10 S R 2
Pos radians/sec 2
W, radians/Sec .« « v 4 ¢ 4 4 4 4 e e e e e e e e e e e e e e e e e e . 20
J, radians/sec/sec . . . 4 . v i b 4 e e e e e e e e e e e e e e oo .. . L0

Values for Bl and 84 were determined simply by varying these gains until

the system response seemed to be the best obtainable. The simulation was then
used to study system performance in a variety of circumstances. Consideration
was given to the effects of varied initial conditions, magnitude of control tor-
que, presence of external torques, variation of spin rate, and combinations of
these.

RESULTS AND DISCUSSION

The analog simulation of the spinning body control system was used to eval-
uate system performance for a variety of conditions of interest. The results of
this investigation are summarized by considering figures 5 to 11.

The first obJectlve of the analog study was to determine the best values
for the gains bl and bu and to check the sharpness of the stability limit

13



by IyD
given in the appendix (o < by < - LI@> It was found that for high values of

gll, limit cycle difficulties exist. Actually, these were not true limit
cycles, but as the system approached the origin, damping became very light. As
the value of lgll was decreased (gh being held constant> toward the stability

limit, the overall damping decreased but damping close to the origin improved.
The system remained stable across the l1imit but instability was encountered when

the limit was grossly violated. As expected, higher values of the ratio ’84/%1'

produced better damping of the angles (gh is essentiglly the angular error
gain). However, the rate damping became relatively poor for high values of this

b1Iyvp
ratio. The inequality O < by < - —£3§—9 proved to be a conservative stability

limit. Consideration of the data led to the selection of the values 31 = =1.5
and gu = 2.5 for further study. It was felt that these values gave the best

compromise in evaluating all the factors..

The effect of control torque magnitude was investigated and, as expected,
the system responded faster as control torque was increased. The value J = 1.0
was selected arbitrarily for further study. With these parameter values, fig-
ure 5 shows typical system responses to arbitrary initial conditions. Note that
the response to all conditions is smooth and the damping strong, with no limit
cycle difficulties.

In order to evaluate the utility of the system for nulling the effects of
external torques such as those due to thrust misalinement, constant torques as
large as 75 percent of the avallable control torque were simulated. Since the
control was asymmetric (pltch torques only), torques effective in the pitch
plane, in the yaw plane, and inclined 45° to both planes were tested. Time
histories for these three conditions are shown in figure 6. All these responses
were for an external torque magnitude equal to 75 percent of the control torque.
The damping for these cases was not substantially changed from the nominal case
response.

An apparent difficulty that might be encountered by this system is a
dependence of performance on the frequency at which the switching hyperplane
was oscillated. To investigate this possibility, the spin rate of the simulated
vehicle was increased as much as 50 percent and decreased as much as 50 percent
while the switching hyperplane was oscillated with the original freguency. Time
histories of the extreme cases (50 percent variation in vehicle spin rate) are
shown in figures 7 and 8. Figures 7 and 8 show the high (Po = 37.5 radians/sec)

and low (Po = 12.5 radians/sec) spin rates, respectively. It is apparent that

the effect of off-nominal vehicle spin rate is not significantly deleterious
to system performance.

14
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(2) Initiel angle B = 0.2 radian.

Figure 5.- Time history of nominal system response for 81 = =1.5

end by = 2.5.
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(b) Initial angular rate q = 1.0 radian/sec.

Figure 5.~ Continued.
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(c) Combined initiel conditions r = 0.5 radian/sec and o = 0.1

Figure 5.- Concluded.
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q=1.0 radian/sec and external pitching moment equal to 0.75J1.

Figure 6.- Time history of nominal system response.
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(b) Initial angle B = 0.2 radian and external yewing moment equal to O0.75J1.

Figure 6.- Continued.
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B = 0.2 radian and external moment equal to 0.75J1 with equael pitch and yaw
components.

Figure 6.- Concluded.
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Figure T.- Time history of system with vehilcle spin rate increased 50 percent, nominal feedback

frequency, and initial angle B = 0.2 redian.
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Figure 8.- Time history of system with vehicle spin rate reduced 50 percent, nominal feedback
frequency, and initial angular rate g = 1.0 radian/sec.

Cases where an interference torque was present and the roll was also off
nominal were run. The high roll rate case for pitch and yaw interference torques
is represented by figure 9. Similarly, the low roll rate case 1s represented in
figure 10. The 1imit cycle behavior in these cases correlates well with the

nominal roll rate case.

Finally, a time optimal control case was calculated on the digital com-
puter. The nonoptimal control system was then calculated from the same initial

conditions. Time histories of |‘§1t)’l comparing the responses of the two

systems are shown in figure 11. Note that the nonoptimal (but closed loop)

logic yields comparable damping, even though the number of switches was about
four times that of the optimal system for this set of initial conditions. This
comparison is intended to show that the system with linear switching is basically
efficient, and it is already apparent that this type of logic is capable of
handling a variety of random inputs and off-nominal system characteristics.
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linear switching with the response of the time optimal system for same initial conditions.
g, = 0.734 redian/sec; ro = -1.02 radians/sec; an = 0.248 radian; and Bop = 0.117 radian.

CO™MCLUDING REMARKS

The intent of this paper has been to present and discuss a technique for
the synthesis of a particular class of bang-bang control systems. This tech-
nique, which uses linear switching with time-dependent gains, was applied to an
example problem and the stability and flexibllity of the control under a variety
of conditions has been demonstrated.

This control-synthesis technique appears to be applicable to a wide range
of control problems and offers a method for alleviating the endpoint problem
which is common to linear switching with constant gains. Future developments
of this technique should include generalization to systems with more than one
control and considerstions of switching delay times, hysteresis, and transport

lags.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., December 5, 1963.
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APPENDIX
DYNAMIC AND CONTROL LOGIC EQUATTIONS

Vehicle Equations
The equations which were used to describe the dynamics of the vehicle were
Euler's dynamic equations. (See ref. 15.) The following assumptions were
employed in the description:
(1) No coupling between the force and moment equations
(2) Symmetric inertia distribution, that is, Iy = Iy =1
(3) No X-component of torgue so that p =py > O

(4) The moments of inertia satisfy the inequality Iy < I.

With these assumptions, the equations were written as

q - wor = Ju(t) + %; (A1)
T+ wq = EI? (A2)
where
w = <1 . II_X)pO (43)
,u(t)’ €1 (A4)

and IJ is the maximum available control torque.

General Gimbal Angle Equations

In deriving the equations for o and B, the followlng assumptions were
made:

(1) No torques act on the free gyro

(2) The spin axis and total angular momentum vector of the free gyro are
coincident and alined with a reference direction in inertial space.

With these assumptions, a unit vector € in the direction of the free gyro spin
axis satisfies the following vector differential equation written in the princi-
pal vehicle axis system:
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f;(é’) + %€ = 0 (a5)

where

{‘ Q= po? + a3 + % (A6)
and from figure 3 it is easily seen that

, e = cos o cos BT + sin BF - sin a cos BK (A7)

Linearized Gimbal Angle Equations

The scalar equations corresponding to eguation (A5) were linearized by
making the following assumptions:

(1) sina =
cos a =1
(a8)
sin B =B
cos B =1

(2) The products ad, Bé, qa, and rB are small quantities and may be
neglected. Under these assumptions, the differential equations for o and B
are:

& - pop = -q (a9)

B+ pya=-r (A10)

State Vector Form of Equations

In order to express equations (Al), (A2), (A9), and (Al0) in state vector
form, define
|

X = : (A11)

a

3

29



o)

= (3 > 0)

Then for My = My = O, the equations can be written as
X = [A]§?+ uz

Note that the controllability condition is satisfied since
det<a’,A£’,A25’,A3’é’> = JMwp (@ + po)Z # O

Control Logic Equations

For this problem, the control law has the form

u(%5t) = sgn(by(t)g + by(t)r + bs(t)a + bh(t)@

where b has the form -[B]‘e? and all the roots of

det ([A] 3 - ?\[I:D =0

have negative real parts. If b is assumed to have the form

ol
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(A13)

(ALk)

(A15)

(A16)

(ALT)

(a18)




equation (Al7) can be written as
A - o\ + (p02 * w2)7\2 B JI:blpo2 + (po * ‘D)bﬂx +@Pp 2 =0 (A19)

Application of the Routh-Hurwitz stabiiity criterion (see, for example, ref. 16)
to equation (A19) shows that the roots will have negative real parts if

‘ b,IyP
! 0< by < - =X0° (A20)
—,
If b(t) has the form
| . -
bl cos 2wt
. 0
b(t) = (A21)
0
by,

it is easy to find values for the constants ‘?’1 and f)h such that inequal-

ity (A20) holds, and if any value of t 2 0 is given, there exists a
B = B¥ > 0 such that b = -B3.
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